169k views
5 votes
Determine, to the nearest tenth, the perimeter of the triangle shown in the accompanying diagram.

Determine, to the nearest tenth, the perimeter of the triangle shown in the accompanying-example-1

1 Answer

7 votes

Answer:

D. 23.3

Explanation:

The perimeter of a triangle is the sum of all its side lengths,

Given the coordinates of the vertices of triangle ABC as:

• A(-9,6), B(-3,10) and C(-2,2)

First, we find the side lengths using the distance formula below:


Distance=√((x_2-x_1)^2+(y_2-y_1)^2)

Using points A(-9,6) and B(-3,10):


\begin{gathered} AB=\sqrt[]{(-3-(-9))^2+(10-6)^2} \\ =\sqrt[]{(-3+9)^2+(4)^2}=\sqrt[]{(6)^2+(4)^2}=\sqrt[]{36+16} \\ AB=\sqrt[]{52} \end{gathered}

Using points B(-3,10) and C(-2,2):


\begin{gathered} BC=\sqrt[]{(-2-(-3))^2+(2-10)^2} \\ =\sqrt[]{(-2+3)^2+(-8)^2}=\sqrt[]{(1)^2+(-8)^2}=\sqrt[]{1+64} \\ BC=\sqrt[]{65} \end{gathered}

Finally, using points A(-9,6) and C(-2,2):


\begin{gathered} AC=\sqrt[]{(-2-(-9))^2+(2-6)^2} \\ =\sqrt[]{(-2+9)^2+(-4)^2}=\sqrt[]{(7)^2+(-4)^2}=\sqrt[]{49+16} \\ AC=\sqrt[]{65} \end{gathered}

Therefore, the perimeter of triangle ABC is:


\begin{gathered} \text{Perimeter}=AB+BC+AC \\ =\sqrt[]{52}+\sqrt[]{65}+\sqrt[]{65} \\ =23.3\text{ units} \end{gathered}

The correct option is D.

User Pablo Cegarra
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories