Answer:
D. 23.3
Explanation:
The perimeter of a triangle is the sum of all its side lengths,
Given the coordinates of the vertices of triangle ABC as:
• A(-9,6), B(-3,10) and C(-2,2)
First, we find the side lengths using the distance formula below:

Using points A(-9,6) and B(-3,10):
![\begin{gathered} AB=\sqrt[]{(-3-(-9))^2+(10-6)^2} \\ =\sqrt[]{(-3+9)^2+(4)^2}=\sqrt[]{(6)^2+(4)^2}=\sqrt[]{36+16} \\ AB=\sqrt[]{52} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wc2ctdnav0j7gsj3k2polo4id7jg0x9plj.png)
Using points B(-3,10) and C(-2,2):
![\begin{gathered} BC=\sqrt[]{(-2-(-3))^2+(2-10)^2} \\ =\sqrt[]{(-2+3)^2+(-8)^2}=\sqrt[]{(1)^2+(-8)^2}=\sqrt[]{1+64} \\ BC=\sqrt[]{65} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l8up7jh13k30bfkrpjdhyptk5y790y0wuk.png)
Finally, using points A(-9,6) and C(-2,2):
![\begin{gathered} AC=\sqrt[]{(-2-(-9))^2+(2-6)^2} \\ =\sqrt[]{(-2+9)^2+(-4)^2}=\sqrt[]{(7)^2+(-4)^2}=\sqrt[]{49+16} \\ AC=\sqrt[]{65} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dm9z2nl7nxpw0um94ggl864no8di95g439.png)
Therefore, the perimeter of triangle ABC is:
![\begin{gathered} \text{Perimeter}=AB+BC+AC \\ =\sqrt[]{52}+\sqrt[]{65}+\sqrt[]{65} \\ =23.3\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nq9b1b3z5dh9e4pbg0cyaaodq2as29octe.png)
The correct option is D.