96.6k views
4 votes
Find the terminal point on the unit circle determined byradians.Use exact values, not decimal approximations.

Find the terminal point on the unit circle determined byradians.Use exact values, not-example-1
User MWillemse
by
4.5k points

1 Answer

3 votes

\begin{gathered} \text{Answer: x = }\frac{\sqrt[]{2}}{2}\text{ , y = -}\frac{\sqrt[]{2}}{2} \\ (\frac{\sqrt[]{2}}{2\text{ }}\text{ , -}\frac{\sqrt[]{2}}{2}) \end{gathered}

Step-by-step explanation:


\begin{gathered} Given\text{ the radius of the circle be }(7\pi)/(4) \\ x\text{ - coordinate = cos }\theta \\ \text{y - coordinate = sin}\theta \\ x\text{ = cos}(7\pi)/(4)\text{ , y = sin }(7\pi)/(4) \\ \text{let 1}\pi\text{ = 180 degre}es \\ x\text{ = cos}\frac{7\cdot\text{ 180}}{4}\text{ , y = sin }\frac{7\cdot\text{ 180}}{4} \\ \text{x = cos }(1260)/(4)\text{ , y = sin }(1260)/(4) \\ \text{x = cos 315, y = sin 315} \\ \text{x = }\frac{\sqrt[]{2}}{2}\text{ , y = -}\frac{\sqrt[]{2}}{2} \end{gathered}

User Mikhail Glushenkov
by
4.8k points