Given:
Principal amount = $5000
Interest rate = 16%
Find-:
(a) Amount owed at the end of 1 year.
(b) Amount owed at the end of 1 year.
Sol:
The compound interest rate is:
![A=P(1+(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/39foo2gerf9tf1ffk32zwshrn339mz02kv.png)
Where,
![\begin{gathered} A=\text{ Amount after ''t'' time.} \\ \\ t=\text{ time in year.} \\ \\ r=\text{ Annual interest rate.} \\ \\ n=\text{ The number of times that interest is compounded per year.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x444mxflnrvaikxz4oojqaxv7267pkjgs8.png)
(a)
![\begin{gathered} t=1 \\ \\ n=1 \\ \\ r=(16)/(100) \\ \\ =0.16 \\ \\ p=5000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ranjsan5zqi5gimo925tq69froj3rmita3.png)
Amount after one year.
![\begin{gathered} A=P(1+(r)/(n))^(nt) \\ \\ =5000(1+(0.16)/(1))^(1*1) \\ \\ =5000(1.16) \\ \\ =5800 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yxsz99butofjcbm7ypegu633k2d7sknq8j.png)
The amount after one year is $5800.
(b)
![\begin{gathered} P=5000 \\ \\ r=0.16 \\ \\ t=2 \\ \\ n=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jdtj76xgtgtsoi5r6l41uugxcdkq3o172x.png)
So the amount after two years is:
![\begin{gathered} A=P(1+(r)/(n))^(nt) \\ \\ A=5000(1+(0.16)/(1))^(1*2) \\ \\ A=5000(1.16)^2 \\ \\ A=5000*1.3456 \\ \\ A=6728 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lpfq1k5uxxgpnc07wyn5c24o88xa749xqh.png)
The amount after 2 years is $6728.