Given:
There are given that the two points are:
![(-4,5)\text{ and }(2,1)](https://img.qammunity.org/2023/formulas/mathematics/college/tdin1cvq0o562r3m35fzg39lpg3f7k9ngp.png)
Step-by-step explanation:
To find the equation, first, we need to find the slope of the line from the given points.
So,
From the formula of slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Where,
![x_1=-4,y_1=5,x_2=2,y_2=1](https://img.qammunity.org/2023/formulas/mathematics/college/b9uw7ck3fghvmpettdcvoenep8sba6tmav.png)
Then,
Put all the values into the above formula:
So,
![\begin{gathered} m=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ m=(1-5)/(2+4) \\ m=-(4)/(6) \\ m=-(2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fmngw169fv90wek7pmsejrj9tjxbjzoqtg.png)
Now,
From the formula of point-slope form:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
Then,
![\begin{gathered} y-y_(1)=m(x-x_(1)) \\ y-5=-(2)/(3)(x-(-4)) \\ y-5=-(2)/(3)(x+4) \\ 3y-15=-2(x+4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/49lpvnu2uq7nqodz457ymv71d1f8hx5179.png)
Then,
![\begin{gathered} 3y-15=-2(x+4) \\ 3y-15=-2x-8 \\ 3y-15+2x+8=0 \\ 3y+2x-7=0 \\ 3y=-2x+7 \\ y=-(2)/(3)x+(7)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qe5y24b77xab7yainm8vy7ainy0r1oevna.png)
Final answer:
Hence, the equation of line is shown below:
![y=-(2)/(3)x+(7)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/ua8z1918oj7l89wmirno89k8bpy2jfmen3.png)