a) Given the equation below
![C=20+a(m)](https://img.qammunity.org/2023/formulas/mathematics/college/p48oigjhrpqeqnkvlmm490fj44tv0ncmjm.png)
Where
![\begin{gathered} C\text{ is the monthly phone cost} \\ a\text{ is the additional charge per minute} \\ \text{m is the number of minutes used} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jt7bieuqzaal68rcfvx2c19d49ipayqfeo.png)
The equation that can be utilized to find the number of minutes used by a customer can be represented by making m the subject
The equation can be deduced below
![\begin{gathered} C=20+a(m) \\ \text{Take 20 to the left handside} \\ C-20=a(m) \\ \text{Divide both sides by a} \\ (C-20)/(a)=(a(m))/(a) \\ m=(C-20)/(a) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p16jp4uoorix4fl4bl0mvqb9loabonuqzp.png)
Hence, the equation to find the number of minutes, m, a customer used is
![m=(C-20)/(a)](https://img.qammunity.org/2023/formulas/mathematics/college/ggipaaz9dhevt4hdj5dqs9ip896topukpn.png)
The answer is option A
b) If Alicia pays $30 and used 500 minutes, to find the additional charges
That is
![\begin{gathered} C=\text{\$30} \\ m=500\text{minutes} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9cfkpmdvt4efjtzatsx9vgwk5pai7vnmok.png)
Substitute the values to find a
![\begin{gathered} C=20+a(m) \\ 30=20+a(500) \\ \text{Collect like terms} \\ 30-20=500a \\ 10=500a \\ \text{Divide both sides by 500} \\ (500a)/(500)=(10)/(500) \\ a=\text{ \$0.02} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hnz7ygptcunhqt56azp73rufq8vyds0rwd.png)
Where 100 cents = 1 dollar
The additional charges, a = $0.02 in cents will be
![a=0.02*100=2\text{ cents}](https://img.qammunity.org/2023/formulas/mathematics/college/cpl4o40bx1bdvwnynq0luhp5u0djb760wl.png)
Hence, the additional charges, a, per minute used is 2 cents