We are asked to determine the amount of money if a certain amount is compounded annually. We will use the following formula:
![A=P(1+r)^t](https://img.qammunity.org/2023/formulas/mathematics/college/oore8x40g44yuigz8li3pepnuow1o5picv.png)
Where:
![\begin{gathered} A=\text{ future amount} \\ r=\text{ interest rate in decimal form} \\ t=\text{ time} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/95h60poshvurd4axxkmmuhu5xb7m2kgvd5.png)
The decimal form of the interest rate is the following:
![r=(9)/(100)=0.09](https://img.qammunity.org/2023/formulas/mathematics/college/9w6ae2rvkrltyv7pzpelfshimlcae37qc7.png)
Now we substitute the given values in the formula:
![A=(80000)(1+0.09)^2](https://img.qammunity.org/2023/formulas/mathematics/college/ukqt7q04sdp9fbhe1li7xnfp6r0kimz6wa.png)
Now we solve the operations:
![A=95048](https://img.qammunity.org/2023/formulas/mathematics/college/76hj0feu9rtyo5o42y8ichn00iqypu6t2b.png)
Therefore, after two years the amount is $95048.