68.5k views
3 votes
Convert each geometric sequence into an exponential function.3, 12, 48, 192,….

User ABach
by
7.0k points

1 Answer

4 votes

Use the next formula to write a geometric sequence as a exponential function:


f(n)=f(1)\cdot r^(n-1)

f(1) is the first term

r is the common ratio

1. Find the common ratio: Divide each term into the previous term


\begin{gathered} (12)/(3)=4 \\ \\ (48)/(12)=4 \\ \\ (192)/(48)=4 \end{gathered}

Common ratio: 4

2. Use the first term (3) and the common ratio (4) in the formula above:


f(n)=3\cdot4^(n-1)

Then, the given sequece written in form of a exponential function is:


f(n)=3\cdot4^(n-1)

User Laraconda
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories