SOLUTION:
Case: Simiar traiagles
Method:
It is good practice to separate the triangles into the two identifiable similar triangles
Using similar angle scale ratio:
![\begin{gathered} (13)/(x+3)=(13+x)/(x+19) \\ 13(x+19)=(x+3)(13+x) \\ 13x+247=13x+x^2+39+3x \\ x^2+3x+13x-13x+39-_247=0 \\ x^2+3x-208=0 \\ Solving\text{ }the\text{ }quadratics \\ x=13\text{ }or\text{ }x=-16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7rq6d9p85vgu8m9rb1nh2ivktev5d91zrw.png)
x cannot be -16 because no sides can have negative magnitudes
Hence, x can only be 13.
Final answer:
x= 13