Given:
The mass of the copper sample is,
![m=250\text{ g}](https://img.qammunity.org/2023/formulas/physics/college/3gnggrs85jze2mgj85618p99c49m3518v6.png)
The initial temperature is,
![t_i=20\text{ }\degree C](https://img.qammunity.org/2023/formulas/physics/college/zy9k1ouasww8vv6eqwiojgh4evj27izfrp.png)
The final temperature is
![t_f=45\text{ }\degree C](https://img.qammunity.org/2023/formulas/physics/college/otf1xq0aa83x5le405ztyokdxmb5jxaxt1.png)
The specific heat capacity of copper is,
![c=0.093\text{ cal/g.}\degree C](https://img.qammunity.org/2023/formulas/physics/college/3tgjfbwf2sh50s66rsv1cmg3bqre10kcwv.png)
To find:
The heat generated by the electric current
Step-by-step explanation:
The heat generated by an electric current is,
![H=mc\Delta t](https://img.qammunity.org/2023/formulas/physics/college/ct28uq5jwi36rlz5sx1812kz27krav9rnh.png)
Here, the temperature difference is,
![\begin{gathered} \Delta t=45-20 \\ =25\text{ }\degree C \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/7st7np56r97xd2a14lqmywf60lnzlkp5t9.png)
Substituting the values we get,
![\begin{gathered} H=250*0.093*25 \\ =581.25\text{ cal} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qnu50n3bjnqylk6o4iyzex4soidgj19080.png)
Hence, the required amount of heat is 581.25 cal.