Given the function:
![k(x)=(x^3-8x-32)/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/33hmg5yotz0weekh2sf8z1m5e5dmwjrcdg.png)
We need to find the value of k(x) when x = 3.9 and x = 3.999 and x = 4.001
So, for each value of x we will substitute into the function k(x)
when x = 3.9
![k(x)=(3.9^3-8\cdot3.9-32)/(3.9-4)=(-3.881)/(-0.1)=38.81](https://img.qammunity.org/2023/formulas/mathematics/college/ge5bsq1llm4vgr61w7mld8c1923swr6j1s.png)
When x = 3.999
![k(x)=(3.999^3-8\cdot3.999-32)/(3.999-4)=(-0.039988)/(-0.001)=39.9880012](https://img.qammunity.org/2023/formulas/mathematics/college/f29337xkpsaz7huazj383hl65snbju5fs1.png)
When x = 4.001
![k(x)=(4.001^3-8\cdot4.001-32)/(4.001-4)=(0.040012)/(0.001)=40.0120007](https://img.qammunity.org/2023/formulas/mathematics/college/hrwvbo99tpjb97ojunf30n2ccruk8hgi5a.png)
When x = 4.1
![k(x)=(4.1^3-8\cdot4.1-32)/(4.1-4)=(4.121)/(0.1)=41.21](https://img.qammunity.org/2023/formulas/mathematics/college/yyqy69ievbk16u2c1gzd886pfmaqk7vcfz.png)
So, we can deduce that The limit of the function = 40