Given that the vector a expressed is expressed in magnitude and direction as
![\vec{a}=<√(26),140^0>](https://img.qammunity.org/2023/formulas/mathematics/college/xgwyzru0dx91d1g37rzistxr7z4x7vslkd.png)
We can find the compnent form below.
Step-by-step explanation
The above form of vector a corresponds with the polar coordinates
![](https://img.qammunity.org/2023/formulas/biology/high-school/th3y35ipo1jqnb1pyz12bkyph7hz83zofb.png)
Therefore, to get the component form we must convert to its cartesian coordinates.
![x=rcos\theta\text{ and y=}rsin\theta](https://img.qammunity.org/2023/formulas/mathematics/college/v3k3ku4qnrmwttbyzpmbl23gc92uvgl7co.png)
Therefore;
![\begin{gathered} x=√(26)* cos140^0\text{ and }y=√(26)* sin140^0 \\ x=-3.91\text{ and }y=3.28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/83tlc774taralyyjkvjs6jcgrlr74eym9r.png)
Answer: (-3.91, 3.28)