Start by sketching the rectangle
write the area as an equation
![\begin{gathered} A=L\cdot W \\ 42=(x)(2x+5) \\ 42=2x^2+5x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bcawormqwgck1g9dmxyb9ba1f3je3in3ef.png)
write the expression in the form of a quadratic expression
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
![2x^2+5x-42=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/dk8p80otod2i3h7tsty7oxzgvoqvh7bpoh.png)
solve the equation using the quadratic equation
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
x=-6; x=3.5
since we are talking about meassurements it cannot be a negative, so the solution must be 3.5
Dimensions of the rectangles
Lenght: (2x+5) = 12
Width: 3.5