A direct variation can be express as:
![y=kx](https://img.qammunity.org/2023/formulas/mathematics/college/zfnjlk9kn7jg7cyy0nlnepmsiaxj3b2oge.png)
Now, we know that y=2 when x=6; plugging this values in the equation above and solving for k we have:
![\begin{gathered} 2=6k \\ k=(2)/(6) \\ k=(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cb5ti76jhp5i32d9es9kr0xayx6zo9yzzy.png)
Hence our variation in this case is:
![y=(1)/(3)x](https://img.qammunity.org/2023/formulas/mathematics/high-school/am9s8jz3u8lh0bw6zvwv1pp196omf9h3an.png)
Now that we have the expression for the direct variation we plug the value x=3/4 to find y:
![\begin{gathered} y=(1)/(3)\cdot(3)/(4) \\ y=(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7mof3u7ir72yv3zg8z95tedlwimq65clrv.png)
Therefore when x=3/4 the value of y is 1/4.