According to the Tangent-Secant theorem, the length of the tangent segment KL squared, must be equal to the product of the lengths of the secant segments LN and LM:
![LM\cdot LN=(KL)^2](https://img.qammunity.org/2023/formulas/mathematics/college/qxgagippbxve4mbnycvjchp9au1zmwxjj1.png)
Replace KL=18, LM=12 and LN=12+(2x-9) in order to get an equation for x and find its value:
![\Rightarrow12(12+2x-9)=18^2](https://img.qammunity.org/2023/formulas/mathematics/college/bngjgwz4h0hphrr5kjlmvs4ltmj1zxou2d.png)
Solve for x:
![\begin{gathered} \Rightarrow12(2x+3)=324 \\ \Rightarrow2x+3=(324)/(12) \\ \Rightarrow2x+3=27 \\ \Rightarrow2x=27-3 \\ \Rightarrow2x=24 \\ \Rightarrow x=(24)/(2) \\ \therefore x=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/th0khvwsujrqtq1jbwdgrkwj9htxu5qjv6.png)
Replace x=12 in the expression for MN to find the length MN:
![\begin{gathered} MN=2x-9 \\ =2(12)-9 \\ =24-9 \\ =15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o74ust8pz9aksyplmxss7meay09c2g7xm8.png)
Therefore, the measure of MN is 15.
The correct choice is option C) 15.