232k views
5 votes
find the solutions to the following rational equation. check for extraneous solutions. keep your answers as exact as possible.4x/x^2+x-6=7x/x^2-5x-24 +3/x^2-10x+16

1 Answer

0 votes

we have the problem


(4x)/(x^2+x-6)=(7x)/(x^2-5x-24)+(3)/(x^2-10x+16)

Simplify the denominators

so

x^2+x-6=(x+3)(x-2)

x^2-5x-24=(x+3)(x-8)

x^2-10x+16=(x-2)(x-8)

sustitute en la expresion original


(4x)/(\mleft(x+3\mright)\mleft(x-2\mright))=(7x)/(\mleft(x+3\mright)\mleft(x-8\mright))+(3)/(\mleft(x-2\mright)\mleft(x-8\mright))

Multiplica ambos lados por (x+3)(x-8)(x-2) para eliminar fracciones


(4x\mleft(x+3\mright)\mleft(x-8\mright)\mleft(x-2\mright))/((x+3)(x-2))=(7x\mleft(x+3\mright)\mleft(x-8\mright)\mleft(x-2\mright))/((x+3)(x-8))+(3\mleft(x+3\mright)\mleft(x-8\mright)\mleft(x-2\mright))/((x-2)(x-8))

simplifica


4x(x-8)=7x(x-2)+3(x+3)
4x^2-32x=7x^2-14x+3x+9
\begin{gathered} 4x^2-32x=7x^2-11x+9 \\ 7x^2-4x^2+32x-11x+9=0 \\ 3x^2+21x+9=0 \end{gathered}

simplifica, divide por 3 toda la expression


x^2+7x+3=0

Resuelve la ecuacion quadratica utilizando la formula

a=1

b=7

c=3

sustituye


x=\frac{-7\pm\sqrt[]{7^2-4(1)(3)}}{2(1)}
x=\frac{-7\pm\sqrt[]{27}}{2}

Las soluciones son


x=\frac{-7+\sqrt[]{27}}{2}
x=\frac{-7-\sqrt[]{27}}{2}

User Tanja Bayer
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories