95.9k views
1 vote
triangle IJK with vertices I(-9,-8),(J-5,-6), and K(-7,-3), is drawn on the coordinate grid below. what is the area in square units of triangle IJK

1 Answer

3 votes

First, we have to calculate the length of each side using the distance formula.

Given two points (x1, y1) and (x2, y2) the distance between them is computed as follows:


d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}

Segment IJ: I(-9, -8) and J(-5,-6)


\begin{gathered} IJ=\sqrt[]{(-5-(-9))^2+(-6-(-8))^2} \\ IJ=\sqrt[]{16+4^{}} \\ IJ=\sqrt[]{20^{}}\approx4.47 \end{gathered}

Segment IK: I(-9, -8) and K(-7,-3)


\begin{gathered} IK=\sqrt[]{(-7-(-9))^2+(-3-(-8))^2} \\ IK=\sqrt[]{4+25} \\ IK=\sqrt[]{29}\approx5.39 \end{gathered}

Segment JK: J(-5, -6) and K(-7,-3)


\begin{gathered} JK=\sqrt[]{(-7-(-5))^2+(-3-(-6))^2} \\ JK=\sqrt[]{4+9} \\ JK=\sqrt[]{13}\approx3.61 \end{gathered}

Using Heron's formula,


\begin{gathered} s=(IJ+IK+JK)/(2) \\ s=(4.47+5.39+3.61)/(2) \\ s=6.74 \end{gathered}
\begin{gathered} \text{Area}=\sqrt[]{s\cdot(s-IJ)\cdot(s-IK)\cdot(s-JK)} \\ \text{Area}=\sqrt[]{6.74\cdot(6.74-4.47)\cdot(6.74-5.39)\cdot(6.74-3.61)} \\ \text{Area}=\sqrt[]{6.74\cdot2.27\cdot1.35\cdot3.13} \\ \text{Area}=\sqrt[]{64.65} \\ \text{Area=}8.04\text{ square units} \end{gathered}

triangle IJK with vertices I(-9,-8),(J-5,-6), and K(-7,-3), is drawn on the coordinate-example-1
User Homm
by
7.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories