Answer:
The rectangular equivalence is:
![((x-2)/(4))^2+((y+1)/(5))^2=1](https://img.qammunity.org/2023/formulas/mathematics/college/vmrucdh43f2rt2bitv5p19xi4amibdyr7n.png)
The interval of x is [-2, 6]
Step-by-step explanation:
To find the rectangular equivalence, we want an equation of the form:
![\cos^2(\theta)+\sin^2(\theta)=1](https://img.qammunity.org/2023/formulas/mathematics/college/kycxy4hoqzjh60e2fur1sx87v44b569a0c.png)
Then, we have the equations:
![\begin{gathered} x(\theta)=4\cos(\theta)+2 \\ y(\theta)=5\sin(\theta)-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i4wsoi6qu4buwnjellncl4mpv9i0y1v4la.png)
On each equation, we solve for cos and sin:
![(x-2)/(4)=\cos(\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/i93yu4exky7mktw5pgb8afsrlblp2haxge.png)
![(x-2)/(4)=\cos(\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/i93yu4exky7mktw5pgb8afsrlblp2haxge.png)
![(y+1)/(5)=\sin(\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/gdefwsk51uw73mt2yh7z53l537fqne9ycx.png)
Now we can square both sides:
![\begin{gathered} ((x-2)/(4))^2=\cos^2(\theta) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o6y5n7uamdovkdknisxcp6h3e84y3yhbx7.png)
![((y+1)/(5))^2=\sin^2(\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/2aeofasy3cl2bkrg7r5wmpyp9mr085dhf8.png)
Now we can write:
![((x-2)/(4))^2+((y+1)/(5))^2=1](https://img.qammunity.org/2023/formulas/mathematics/college/vmrucdh43f2rt2bitv5p19xi4amibdyr7n.png)
That's the rectangular equivalence of the parametric equations.
Now, to find the interval where x falls under, we have:
![x(\theta)=4\cos(\theta)+2](https://img.qammunity.org/2023/formulas/mathematics/college/qusk5vqo69axh3dt6g8893lqjt8pbedc2u.png)
In this function, the value of x depends only on of θ. The maximum value that cos(θ) is 1, when θ = 0
Then, if θ = 0, cos(θ) = 1
![x(0)=4\cdot1+2=6](https://img.qammunity.org/2023/formulas/mathematics/college/ox8txvxflh171y9sh6e84eicngqvur7cbc.png)
The minimum value of cos(θ) is -1, when θ = π
If θ = π, cos(θ) = -1
Then:
![x(\pi)=4\cdot(-1)+2=-2](https://img.qammunity.org/2023/formulas/mathematics/college/wolsdardztose7nxw36evlb56fdt2k0pzt.png)
The interval is [-2, 6]