Given the equation of the curve:
![y=5-(8)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/j2zpqpdpsw3tzx0kdnitwqu00jp8l3kk1v.png)
We will differentiate the equation to find the slope of the tangential
So,
![y^(\prime)=0-8\cdot-(1)/(x^2)=(8)/(x^2)](https://img.qammunity.org/2023/formulas/mathematics/college/k5slihx1xf03eqjwya485ii1ymlupwj8di.png)
So, the value of the slope at the point P(2, 1) will be = m
![m=(8)/(2^2)=(8)/(4)=2](https://img.qammunity.org/2023/formulas/mathematics/college/hq6brmczani1e2srpklhms8s0h5k9luit7.png)
The slope of the normal at the same point = m'
![m^(\prime)=-(1)/(m)=-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/mhl5jzappklh9w0r1vkfq8xprogfbvrunk.png)
The equation of the line using the point-slope form will be:
![\begin{gathered} (y-1)=-(1)/(2)(x-2) \\ y-1=-(1)/(2)x+1 \\ y+(1)/(2)x=2\rightarrow(*2) \\ \\ 2y+x=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uiw3jpki9zgi95tu5tfb6aooj6d2t5un05.png)
So, the answer will be the equation of the normal line 2y + x = 4
B) The normal line meets the curve at point Q
We will find the point Q by substitution
Substitute with y from the given equation of the curve into the equation of the line:
![\begin{gathered} 2(5-(8)/(x))+x=4 \\ 10-(16)/(x)+x=4\rightarrow(* x) \\ \\ 10x-16+x^2=4x \\ x^2+6x-16=0 \\ (x+8)(x-2)=0 \\ x=-8,orx=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c2e792a5r5oqcud8urizfvjzm423s0qlku.png)
Substitute with x into the equation of the curve to find y:
![\begin{gathered} x=-8\rightarrow y=5-(8)/(-8)=6 \\ \\ x=2\rightarrow y=5-(8)/(2)=5-4=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7r36gbo144uyn77emruka1uwzavdhwspb5.png)
So, the answer will be
Q = (-8, 6) or Q = (2, 1)