198k views
1 vote
In the diagram, q₁ = -4.60 x 10-6 C,=92 +3.75 x 10-6 C, and q3 = +8.30 x 10-5 C.Find the magnitude of the net force on 93.91920.283 m45.0°0.200 m0.200 m93(Make sure you know the direction of each force!)magnitude (N)

In the diagram, q₁ = -4.60 x 10-6 C,=92 +3.75 x 10-6 C, and q3 = +8.30 x 10-5 C.Find-example-1
User LRutten
by
3.1k points

1 Answer

5 votes

Given:

• q1 = -4.60 x 10⁻⁶ C.

,

• q2 = +3.75 x 10⁻⁶ C.

,

• q3 = +8.30 x 10⁻⁵ C.

,

• d12 = 0.283 m

,

• d23 = 0.200 m

,

• d13 = 0.200

Let's find the magnitude of the net force on q3.

Let's first find the force acting on q1 and q3:


\begin{gathered} F_(13)=(kq_1q_2)/((d_(13))^2) \\ \\ F_(13)=\frac{9*10^9*4.60\operatorname{*}10^(-6)*8.30\operatorname{*}10^(-5)}{0.200^2} \\ \\ F_(13)=85.9\text{ N} \end{gathered}

Also, for the force acting on q2 and q3, we have:


\begin{gathered} F_(23)=(kq_2q_3)/((d_(23))^2) \\ \\ F_(23)=\frac{9*10^9*3.75\operatorname{*}10^(-6)*8.30\operatorname{*}10^(-5)}{0.200^2} \\ \\ F_(23)=70.03\text{ N} \end{gathered}

Therefore, the magnitude of the net force on q3 will be:


\begin{gathered} F_(net)=\sqrt{(F_(13))^2+(F_(23))^2} \\ \\ F_(net)=√(85.9^2+70.3^2) \\ \\ F_(net)=√(7379.6+4904.4) \\ \\ F_(net)=110.99\approx111\text{ N} \end{gathered}

Therefore, the magnitude of the net force on q3 is 111 N.

• ANSWER:

111 N

User Rudd Zwolinski
by
3.7k points