161k views
3 votes
In the diagram above, each of the eight triangles is identical.The radius of the circle is 10 cm.a)Find the size of angle AÖB, marked e in the diagram.b)Find the total area of the shaded regions, giving the answer to 3 significantfigures.

In the diagram above, each of the eight triangles is identical.The radius of the circle-example-1

1 Answer

3 votes

Given a circle with centre o and inscribed 8 identical triangles with radius 10cm

(a) To Determine: The size of angle AOB

Solution:

Note that all the 8 identical tringles divide the circle into 8 equal parts with 8 equal angles.

Also note that sum of angle at the centre of the circle is 360 degrees

Given that one of the angle is angle AOB, then


\begin{gathered} 8* m\angle AOB=360^0(sum\text{ of angles at a point)} \\ m\angle AOB=\theta,So \\ 8*\theta=360^0 \\ \theta=(360^0)/(8) \\ \theta=45^0 \end{gathered}

Hence, angle AOB is equal to 45⁰

(b) To Determine: The total area of the shaded regions

The area of the shaded region is


\text{area of shaded region=area of circle - area of the 8 identical triangles}
\begin{gathered} A_{\text{circle}}=\pi r^2;r=10\operatorname{cm} \\ A_{\text{circle}}=\pi*10^2 \\ A_{\text{circle}}=100\pi \\ A_{\text{circle}}=314.1592654\operatorname{cm}^2 \end{gathered}
\begin{gathered} A_{\text{triangles}}=(1)/(2)r^2\sin \theta \\ A_{\text{triangles}}=(1)/(2)*10^2*\sin 45^0 \\ A_{\text{triangles}}=(1)/(2)*100*0.7071 \\ A_{\text{triangles}}=35.35533908\operatorname{cm}^2 \\ A_{8\text{triangles}}=8*35.35533908\operatorname{cm} \\ A_{8\text{triangles}}=282.8427125\operatorname{cm}^2 \end{gathered}
\begin{gathered} A_{\text{shaded region}}=A_(circle)-A_(8triangles) \\ A_{\text{shaded region}}=314.1592654\operatorname{cm}-282.8427125\operatorname{cm}^2 \\ A_{\text{shaded region}}=31.31655\operatorname{cm}^2 \\ A_{\text{shaded region}}=31.3\operatorname{cm}^2(3\text{significant figure)} \end{gathered}

Answer Summary:

(a) The size of angle AOB is 45⁰

(b) The total area of the shaded region correct to 3 significant figures is 31.3cm²

User Broote
by
7.9k points