The Solution to Question 16C:
Given the functions:
![g(x)=\begin{cases}(x)/(3)+2\text{ if x<1} \\ \\ 4x-2\text{ if x}\ge1\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/nqbolwxn7iivlrh06zv37fkx258iipb6cc.png)
![f(x)=2x+7_{}](https://img.qammunity.org/2023/formulas/mathematics/college/zbbgb9foir2lhapi8ki2zayviaozt0bbsq.png)
We are required to investigate which of the two functions has the greater average rate of change over the interval
![-12\leq x\leq8](https://img.qammunity.org/2023/formulas/mathematics/college/vp9f5aofe46lk7xb1oxg6t27f7kxvjxifk.png)
Step 1:
The formula for the rate of change is:
![\begin{gathered} (f(b)-f(a))/(b-a)\text{ if b>a} \\ \\ a=-12 \\ b=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5pj206vxhqcbh3hlgvwrydfzygfan5w552.png)
Step 2:
We shall find the rate of change for f(x) and g(x).
The rate of change for g(x):
![=((32-2)-(-4+2))/(8+12)=(30--2)/(20)=(32)/(20)=1.6](https://img.qammunity.org/2023/formulas/mathematics/college/hftf3cr0pmbdi49k3hu0psm6f84q1i1yew.png)
Similarly,
The rate of change for f(x):
![\text{ Rate of change=}(f(8)-f(-12))/(8--12)=(\lbrack2(8)+7\rbrack-\lbrack2(-12)+7\rbrack)/(8+12)](https://img.qammunity.org/2023/formulas/mathematics/college/h4wafqd8tjjrr14ltjkjcceceae5ch0tr0.png)
![=((16+7)-(-24+7))/(20)=(23--17)/(20)=(23+17)/(20)=(40)/(20)=2](https://img.qammunity.org/2023/formulas/mathematics/college/la4r8jbns8503nc6nv3dy6lhgdc6meo8qj.png)
Comparing the rate of change of both functions, we have that:
![\begin{gathered} g(x)\text{ rate of change = 1.6 while that of f(x) =2} \\ \text{ since 2>1.6, we conclude that f(x) has a greater rate of change.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ly3j5kd87vj3ecy22msfqsfxy1oroj7w2w.png)
Thus, the function f(x) has a greater average rate of change than the function g(x) since 2 is greater than 1.6 over the given interval.