Given:
The height of the pyramid is h = 3ft
The base of the pyramid is square.
The side of the square is a =16 ft.
Required:
We need to find the surface area of the pyramid.
Step-by-step explanation:
Consider the surface area of the pyramid formula.
![S=base\text{ area+}(1)/(2)* perimeter* slant\text{ height.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u7xjsblhlecb2xiabecqowocjzau8meq1e.png)
![Substitute\text{ base area=a}^2,\text{ perimeter =4a since the base is square. and let slant height =l.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p3dvum0nqbf43c7g46h8o2kbojzjq8twrr.png)
![S=a^2\text{+}(1)/(2)*4a* l](https://img.qammunity.org/2023/formulas/mathematics/high-school/28k3qulq6rzpcsqbk732npvm51gppn6ru6.png)
Use the Pythagorean theorem to find the slant height l.
![l=√(3^2+8^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cgkm8rslzsb2nzxmm1886mxi9dvd1v86mw.png)
![l=√(9+64)](https://img.qammunity.org/2023/formulas/mathematics/high-school/juguwa5zfkck42zzw5jdrk6d9pqm76pxrr.png)
![l=√(73)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wo4qxoqph73gnhq4nvyslph2q9brujjxr2.png)
![S=a^2\text{+}(1)/(2)*4a* l](https://img.qammunity.org/2023/formulas/mathematics/high-school/28k3qulq6rzpcsqbk732npvm51gppn6ru6.png)
![Substitute\text{ a =16 and l=}√(73)\text{ in the formula.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ei5sam70jdvfq3xjuifj0ksymphxnw5t26.png)
![S=16^2\text{+}(1)/(2)*4(16)*√(73)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6f19zl02fr6sgphwbpf0sj7jnja3ry85fx.png)
![S=256+32√(73)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6fvucvl270w0bfnt7s0tjfdxh9n4ckqp5w.png)
![S=32(8+√(73))ft^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/gvqkmioho9rywgqxb7gocbn8gkbjszcyw9.png)
Final answer:
The surface area of the given pyramid is
![S=32(8+√(73))ft^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/gvqkmioho9rywgqxb7gocbn8gkbjszcyw9.png)