Length : x
Width : x + 6
Area of a rectangle = length x width
Area = 55 m2
Replacing:
55 = x (x+6)
Solve for x
55 = x^2 + 6x
0 = x^2+6x-55
x^2 +6x - 55
Now we have a quadratic equation, the form is
ax^2 + bx +c
Where:
a= 1
b= 6
c= -55
Apply the quadratic formula:
![\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2\cdot a}](https://img.qammunity.org/2023/formulas/mathematics/college/6ll9xrpkhophltqj6goc56svs0vp43p5j4.png)
Replacing:
![\frac{-6\pm\sqrt[]{6^2-4\cdot1\cdot-55}}{2\cdot1}](https://img.qammunity.org/2023/formulas/mathematics/college/lws9gixifym8ag5sk5htdmnbxgvth1r8i6.png)
![\frac{-6\pm\sqrt[]{36+220}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/81fqfgsyah0d8vc35prmxye8uclho8j2j3.png)

Positive :
(-6+16) /2 = 10/2 = 5
Negative :
(-6-16)/2 = -11
Since lengths and widths can't be negative, we have to use x=5
Width = x+6 = 5+6 = 11
Length = x = 5
Width = 11
Length = 5