This problem asks to:
a) Find a model to predict the population P as a function of t (years since 2011).
b) Predict the population in 2022.
To find this information, follow the steps below.
Step 1: Write a general equation for populational growth.
The population growth can be represented as:
![P=P_0\cdot e^(r\cdot t)](https://img.qammunity.org/2023/formulas/mathematics/college/zxz4ak4232uuupix6gvhm8irvwohwgtkec.png)
Where:
P is the population in time t;
Po is the initial population;
r is the rate of growth;
t is the time.
Step 2: Write the equation that represents the moose population.
Since the problems aks to evaluate the population from 2011. Use the population in 2011 as the initial population.
Then, P0 = 5,800.
![P=5,800\cdot e^(r\cdot t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vtozb17axakcrsvqhnu1n7jkm8fe6avngh.png)
Now, to find r, use the information for 2017.
In 2017,
P = 8,000
t = 6 (2017 - 2011)
Then,
![\begin{gathered} 8,000=5,800\cdot e^(r\cdot6) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ixt1udky636n0x2vb0uft5m6d2z9drdco7.png)
To isolate r, first divide both sides by 5,800:
![\begin{gathered} (8,000)/(5,800)=e^(r\cdot t) \\ (80)/(58)=e^(r\cdot t) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w0ffcimt5r58wfswm2gf2ks0i6plde1823.png)
Take the ln from both sides.
![\begin{gathered} \ln ((40)/(29))=\ln e^(6r) \\ \text{ Using the properties of ln:} \\ \ln ((40)/(29))=6r\cdot\ln e \\ \ln ((40)/(29))=6r\cdot1 \\ \ln ((40)/(29))=6r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d0ynyupj0y3grr1axgjw2b57ii4f5n0arg.png)
Divide both sides by 6:
![\begin{gathered} (6r)/(6)=(\ln ((40)/(29)))/(6) \\ r=(\ln((40)/(29)))/(6) \\ or \\ r=(0.3216)/(6)=0.0536 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/i8hz5dj2fukso3b17zw8bffa8wjbe99lib.png)
So,
(a) The equation that represents the moose population over the years is:
![P=5,800\cdot e^(0.0536\cdot t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/srqnxlu0b42qbuhscgx58305j4xt132fwb.png)
Step 3: Predict the population in 2022.
In 2022,
t = 11 (2022 - 2011).
Then,
![\begin{gathered} P=5,800\cdot e^(0.0536\cdot t) \\ P=5,800\cdot e^(0.0536\cdot11) \\ P=5,800\cdot e^(0.5895) \\ P=5,800\cdot1.8032 \\ P=10,458.6 \\ P=10,459 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7uh0441x757lgosaugqdt6a42et9h91gbd.png)
(b) The moose population in 2022 will be 10,459.
Answer:
(a)
![P=5,800\cdot e^(0.0536\cdot t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/srqnxlu0b42qbuhscgx58305j4xt132fwb.png)
(b) 10,459.