37.8k views
4 votes
Using the inverse of a matrix solve the following system of equations. Give your answer as an ordered pair.

Using the inverse of a matrix solve the following system of equations. Give your answer-example-1
User Halim
by
7.9k points

1 Answer

1 vote

In order to solve this system using the inverse of a matrix, first let's put the system in the matrix form:


\begin{gathered} \begin{cases}3x+7y=-4 \\ -x-y=2\end{cases} \\ \begin{bmatrix}{3} & {7} & \\ {-1} & {-1} & {}\end{bmatrix}\cdot\begin{bmatrix}{x} \\ {y}\end{bmatrix}=\begin{bmatrix}{-4} \\ {2}\end{bmatrix} \end{gathered}

Now the system is in the form AX = B, where A, X and B are matrices.

To solve this system, we can do the following:


\begin{gathered} AX=B \\ A^(-1)\cdot AX=A^(-1)\cdot B \\ X=A^(-1)\cdot B \end{gathered}

So we need to calculate the inverse matrix of A. We can do this as follows:


\begin{gathered} A^(-1)=(1)/(|A|)\cdot_{}\begin{bmatrix}{d} & {-b} & \\ {-c} & {a} & {}\end{bmatrix} \\ A=\begin{bmatrix}{3} & {7} & \\ {-1} & {-1} & {}\end{bmatrix}\to a=3,b=7,c=-1,d=-1 \\ |A|=a\cdot d-b\cdot c=-3-(-7)=4 \\ A^(-1)=(1)/(4)\cdot\begin{bmatrix}{-1} & {-7} & \\ {1} & {3} & {}\end{bmatrix}=\begin{bmatrix}{-(1)/(4)} & {-(7)/(4)} & \\ {(1)/(4)} & {(3)/(4)} & {}\end{bmatrix} \end{gathered}

Now we have:


\begin{gathered} X=A^(-1)\cdot B \\ \begin{bmatrix}{x} \\ {y}\end{bmatrix}=\begin{bmatrix}{-(1)/(4)} & {-(7)/(4)} & \\ {(1)/(4)} & {(3)/(4)} & {}\end{bmatrix}\cdot\begin{bmatrix}{-4} \\ {2}\end{bmatrix} \\ \begin{bmatrix}{x} \\ {y}\end{bmatrix}=\begin{bmatrix}{-(1)/(4)\cdot(-4)+(-(7)/(4))\cdot2} \\ {(1)/(4)\cdot(-4)+(3)/(4)\cdot2}\end{bmatrix}=\begin{bmatrix}{-2.5} \\ {0.5}\end{bmatrix} \end{gathered}

So the solution of this system is x = -2.5 and y = 0.5

User Nuiun
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories