Let us start by writing the coordinates of the parent image and transformed image
Coordinates of the parent image
![\begin{gathered} A\rightarrow(-1,-1) \\ B\rightarrow(-4,0) \\ C\rightarrow(2,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i540sqdofr6gjw9sdulnte4hfeenxk8d9d.png)
Coordinates of the transformed image
![\begin{gathered} A^(\prime)\rightarrow(1,-1) \\ B^(\prime)\rightarrow(4,0) \\ C^(\prime)\rightarrow(-2,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6l3tiqwh2uzgyran3es1nuvhjf1nel6dgc.png)
From the coordinates of the parent image and the transformed image collated above, we can conclude that the x-axis of the parent image was multiplied by (-) negative sign while the y-values remaining constant.
The mathematical representation is,
![(-x,y)](https://img.qammunity.org/2023/formulas/mathematics/college/d3xopiox1nlippx2fwpq31u0o8cg423emv.png)
Checking for confirmation
![\begin{gathered} A\rightarrow(-(-1),-1)\rightarrow(1,-1)\rightarrow A^(\prime) \\ B\rightarrow(-(-4),0)\rightarrow(4,0)\rightarrow B^(\prime) \\ C\rightarrow(-(2),2)\rightarrow(-2,2)\rightarrow C^(\prime) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/resfjr6phslmo3mio3vyti79egm8ed788a.png)
Therefore, the rule that satisfies the transformation is a reflection across the y-axis.
The correct option is Option 5.