SOLUTION
1. Now, we need to get the z-score for
![\begin{gathered} x<38\text{ and } \\ x>45 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vo5trc970400vz7tx3clsz859ydorbtly0.png)
For x < 38, we have
![Z_(38)=(38-47)/(4)=-2.25](https://img.qammunity.org/2023/formulas/mathematics/college/emy65yongdil4783l3jix97izc7uaviny9.png)
For x > 45, we have
![Z_(45)=(45-47)/(4)=-0.5](https://img.qammunity.org/2023/formulas/mathematics/college/kzvr90e69wt3vlya3zb6laaewq9sqbmslf.png)
The required probability becomes
![\begin{gathered} Pr(Z<-2.25)\cup Pr(Z>-0.5) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qkup5npe7jkzgnp7oermcxuhatbzahc1o3.png)
From the Z-score table/calculator, we have that
![\begin{gathered} Z<-2.25=0.012224 \\ Z>-0.5=0.69146 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/od7jk29zot0mav7g4kpns1ispiskj7guze.png)
So the union sign/or sign means we add. This becomes
![0.012224+0.69146=0.703684](https://img.qammunity.org/2023/formulas/mathematics/college/n3b8f66rhsxrmh8tgtgo5ty33eacib4o5z.png)
Hence the required probability is 0.7037 or 70.37%