![\text{probability}=\frac{\text{ number of favorable outcomes}}{total\text{ number of outcomes}}](https://img.qammunity.org/2023/formulas/mathematics/college/xfgub5tdc00dceg3zmbkaks14f31b23bf7.png)
First event: spin a B
number of favorable outcomes: 1
total number of outcomes: 4
Then, the probability of spinning a B is:
![P(B)=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/d4a6h4fifldua22ekplc7lgsqr0y4lj23i.png)
Second event: rolling an even number
number of favorable outcomes: 3 (2, 4, 6)
total number of outcomes: 6
Then, the probability of rolling an even number is:
![P(even)=(3)/(6)=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/5qbm9guu0joqo6v6xudy2jv07qw5h8lz75.png)
These two events are independent (one event or result doesn't affect the other one), then:
![\text{ P(B and even)=P(B)}\cdot P(even)=(1)/(4)\cdot(1)/(2)=(1)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/chhtu2ll4ofv4qfvliotc63xs3m17ss0ge.png)