To answer this question we will use the following diagram as reference:
From the diagram, we get that, to determine h we can use the trigonometric function tangent:
![\tan 68^(\circ)=(80)/(h)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/wwsddytavubiewfrbj1ougffjsq7gfi0s7.png)
Solving for h, we get:
![h=\frac{80}{\text{tan}68^(\circ)}.](https://img.qammunity.org/2023/formulas/mathematics/college/18cgcf4tingob3mnk0jlmi897e0yk498bi.png)
Now, to determine h+x we can do an analogous procedure, therefore:
![h+x=(80)/(\tan 41^(\circ)).](https://img.qammunity.org/2023/formulas/mathematics/college/ykclr8gybiu58ehiiy6ozmzfti37q2k3c8.png)
Finally, we get that:
![x=h+x-h=(80)/(\tan41^(\circ))-(80)/(\tan 68^(\circ)).](https://img.qammunity.org/2023/formulas/mathematics/college/z8n7zzzwd3g3zp6jwm07z56gpo1mr5gyeq.png)
Simplifying the above result, we get:
![x\approx59.71ft.](https://img.qammunity.org/2023/formulas/mathematics/college/8hi0ymklywakp4j83kp6ohme23xbe8cwnb.png)
Answer:
![59.71ft.](https://img.qammunity.org/2023/formulas/mathematics/college/297pf5h9r6e6me9367bg8ryd8o27kftg98.png)