Since interior angles of any triangle add up to 180, we have
![\angle B+60+44=180](https://img.qammunity.org/2023/formulas/mathematics/college/sbowq3sry7yeevb2xxbnippb87duuwkvof.png)
which gives
![\begin{gathered} \angle B+104=180 \\ \text{then} \\ \angle B=180-104 \\ \angle B=76 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4uc947b6wswnpig438jeiukbxc0azalrmv.png)
Now, in order to find c, we can apply the law of sines, that is,
![\begin{gathered} (\sin C)/(c)=(\sin B)/(b) \\ \text{that is,} \\ (\sin60)/(c)=(\sin76)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gkqhw29vwqborup452yqd14omwivgplzh4.png)
or equivalently,
![(c)/(\sin60)=(7)/(\sin 76)](https://img.qammunity.org/2023/formulas/mathematics/college/gbg01sisyjaru21btqklth8sqgkn912mkx.png)
Then, by moving sin60 to the right hand side, we get
![c=\sin 60*(7)/(\sin 76)](https://img.qammunity.org/2023/formulas/mathematics/college/ikj3kqh8pgrh6md2xtblv8avmwimsnt4l8.png)
which gives
![\begin{gathered} c=0.8660*(7)/(0.97029) \\ c=6.24757 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ehinps7hlsj2fl4x306mq3pq6bmbi02vh8.png)
Similarly, by the law of sines, we have
![\begin{gathered} (\sin A)/(a)=(\sin B)/(b) \\ \text{that is,} \\ (\sin 44)/(a)=(\sin 76)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/euki0c75dc0smls26mp40dlgkjie4pvozt.png)
or equivalently,
![(a)/(\sin44)=(7)/(\sin 76)](https://img.qammunity.org/2023/formulas/mathematics/college/vqsg5hz2rm1xhtp5wz6z75qw52wbzqn0ls.png)
then, a is given as
![\begin{gathered} a=\sin 44*(7)/(\sin 76) \\ a=0.6946*(7)/(0.97029) \\ a=5.011 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/50untb9rkhft97wznpudfq7birfgc5m6z3.png)
In summary, the answers are
![undefined]()