![\begin{gathered} x+y=2 \\ x-y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b0b2q00g4fsmkofkoz1v2jvy9n54y8mj8j.png)
To solve by graphing:
1. Find two points (x,y) for each function:
-First equation:
When x=0
![\begin{gathered} 0+y=2 \\ y=2 \\ \\ \text{Point: (0,2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1fuwylu17k5afm3m9mg1uo2i19sth59xb8.png)
When y=0
![\begin{gathered} x+0=2 \\ x=2 \\ \\ \text{Point: (2,0)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zk8bz0wb27r3v9ker924al9v1fgtvqzgqx.png)
-Second equation:
When x=0
![\begin{gathered} 0-y=4 \\ -y=4 \\ y=-4 \\ \\ \text{Point: }(0,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hqe8hd6e1p714jx1zv5i0ho2zragw0zhzp.png)
When y=0
![\begin{gathered} x-0=4 \\ x=4 \\ \\ \text{Point: (4,0)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1l1r5f2io0xgd63num60o5th8sxt3tp2yu.png)
2. Use the points to graph each function: Put the points in the grind and then draw a line that passes foe each corresponding pair of points:
First function in red
Second function in blue
3. Identify the solution: The solution is the point of intersecion.
Then, the solution is (3,-1)