Answer:
f(x)=-0.3(x-2)²+5
• Option A: ,The vertex, (h,k) = (2, 5)
,
• Option E: ,Axis of Symmetry, x=2
• Option I: ,The focus is (2, 4 1/6)
f(x)=0.2(x+2)²-5
• Option C: ,The vertex, (h,k) = (-2, -5)
,
• Option F: ,Axis of Symmetry, x= -2
• Option G: ,The focus is (-2, 3 3/4)
Explanation:
Part A
Given the equation:
![f(x)=-0.3(x-2)^2+5](https://img.qammunity.org/2023/formulas/mathematics/college/h7y7mt3dgqrxunbkratez7if62c3cqnm16.png)
The standard equation of an up-facing parabola with a vertex at (h,k) and a focal length |p| is given as:
![(x-h)^2=4p(y-k)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7n1egla3ro1gayr3wb18awbiroxmb3i8u7.png)
We rewrite the given equation in the form above:
![\begin{gathered} f(x)=-0.3(x-2)^2+5 \\ f(x)-5=-(3)/(10)(x-2)^2 \\ -(10)/(3)[f(x)-5]=(x-2)^2 \\ \left(x-2\right)^2=4(-(5)/(6))[f(x)-5] \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h54soc0e2tvkmdwl1lf5sulop1ysxra8z7.png)
From the form above:
• Option A: ,The vertex, (h,k) = (2, 5)
,
• Option E: ,Axis of Symmetry, x=2
![Focus,(h,k+p)=(2,5-(5)/(6))=(2,4(1)/(6))](https://img.qammunity.org/2023/formulas/mathematics/college/uv0fvnakouwoxx25jhabcmql2uww83ebxx.png)
• Option I: ,The focus is (2, 4 1/6)
Part B
Given the equation:
![f(x)=0.2(x+2)^2-5](https://img.qammunity.org/2023/formulas/mathematics/college/pxe6x83618r6o20uzls5s9abq5x0zlxuz9.png)
Rewrite the equation in the standard form given earlier:
![\begin{gathered} 0.2(x+2)^2=f(x)+5 \\ (x+2)^2=5[f(x)+5] \\ (x+2)^2=4((5)/(4))[f(x)+5] \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a22u4g5m75ozxl52y69b7dorlahnb184on.png)
From the form above:
• Option C: ,The vertex, (h,k) = (-2, -5)
,
• Option F: ,Axis of Symmetry, x= -2
![Focus,(h,k+p)=(-2,-5+(5)/(4))=(-2,-3(3)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/no4p7f7eb4pjb0ivcek7szfb8mj0tl9iw2.png)
• Option G: ,The focus is (-2, 3 3/4)