The zeros of the polynomial are: -5, 3 and i.
The zeros are the x-values that make each factor equal to zero, then if -5 is a zero:
![\begin{gathered} x=-5 \\ \text{Add 5 to both sides:} \\ x+5=-5+5 \\ x+5=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fl2ziy2whfhk8wyj17v778xk02zhmuzpvl.png)
then (x+5) is one of the factors.
Zero: 3, thus:
![\begin{gathered} x=3 \\ \text{Subtract 3 from both sides} \\ x-3=3-3 \\ x-3=0 \\ (x-3)\text{ is another factor} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1w7d2dym6yymxpxrhshrj6rxrxxsz7srho.png)
Zero: i, thus:
![\begin{gathered} x=i \\ \text{Subtract i from both sides} \\ x-i=i-i \\ x-i=0 \\ (x-i)\text{ is the last factor} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y2qa0jpcdgyj78e0ujv8w25tpe6s00qu2c.png)
A possible factorization of the polynomial is: (x+5)(x-3)(x-i)