SOLUTION
The formula for finding the confidence interval is:
![CI=\bar{x}\pm Z^{}(\frac{\sigma}{\sqrt[]{n}})](https://img.qammunity.org/2023/formulas/mathematics/college/ox3ulxp3bblhg6ypqqkdhvo42kwo9133qo.png)
mean=21.3
S.D=2.3
Sample size (n) =150
From theory, the critical value (Z) for a 99% confidence interval is 2.58
So Z=2.58
Substituting all these parameters into the confidence interval formula,
we will obtain:
![CI=21.3\pm(2.58*(\frac{2.3}{\sqrt[]{150}}))](https://img.qammunity.org/2023/formulas/mathematics/college/b5or4itcla53sxo3hydbp0d8yypfa5gjc7.png)
![\begin{gathered} =21.3\pm(2.58*0.18779) \\ =21.3\pm(0.4844982) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/65f0kaq4pozd0f7ahsd6sd9oazcw2taoy5.png)
![\begin{gathered} =21.3+0.4844982\text{ to 21.3-0.4844982} \\ =21.7844982\text{ to 20.8155018} \\ =21.78\text{ to 20.82 (to the nearest hundredth)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o1d57voey8wrt6vdjw6cqpfucqnktvpc3q.png)
The final answer is 21.78 to 20.82 confidence interval.