Problem 1
It appears the line is going through the points (-1,-4) and (0,5)
Let's find the slope

The slope is 9
The y intercept is b = 5 as this is where the graph crosses the y axis.
We go from y = mx+b to y = 9x+5
Answer: y = 9x+5
=======================================================
Problem 2
This line goes through the points (0,4) and (5,5)
We'll follow the same exact steps as before
First we need the slope

The y intercept is the y coordinate of (0,4) so it's b = 4
Answer:
