To solve this problem, we need to apply the formula for the equation of a straight line.
One of the forms of this formula, which is appropriate for this problem, is as follows:
![(y-y_1)/(x-x_1)=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/3wt52xf3n7hjhwt6qolt0l02t41489sre0.png)
Where (x1 , y1) and (x2 , y2), are the coordinates of any two points that lie on the line.
In this case, the coordinates are: ( -5,-2), and (3, -4)
Now:
![\frac{y-(-2)_{}}{x-(-5)_{}}=\frac{-4_{}-(-2)_{}}{3_{}-(-5)_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/gb7bw0ai1h0jtzrcc9vjvi64g9c4nn1lz5.png)
![\frac{y+2_{}}{x+5_{}}=\frac{-4_{}+2_{}}{3_{}+5_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/vfyw6v2psisrmuwcxv8laogaprvvlkg209.png)
![\frac{y+2_{}}{x+5_{}}=\frac{-2_{}}{8_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/lej7p2tekj9qw1nnamhdcp12pawfkmsjn3.png)
![\frac{y+2_{}}{x+5_{}}=\frac{-1_{}}{4_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/4ylm2qjok66u71kxevmkahv3obu5rakr4n.png)
![\frac{y+2_{}}{x+5_{}}=-0.25](https://img.qammunity.org/2023/formulas/mathematics/college/oudmbnooiaj74eaub6waeetsvlbjkv9khg.png)
![\begin{gathered} y+2_{}=-0.25(x+5)\text{ (OPTION C is correct)} \\ y+2_{}=-0.25x-1.25\text{ Option D is also correct} \\ y=-0.25x-3,25\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3vqwpcpjhkofyru1jdeg6r4ughjbxvvbux.png)