Solution:
The coordinate given is
![\begin{gathered} (-4,-3) \\ x_1=-4,y_1=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5bjrkc5mua8204vi2j46e87o7u9gtka90z.png)
The slope given is
![m=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/cy41bjmxoohctkx1n268skem42gckgktp2.png)
The general equation of a line is given below as
![\begin{gathered} y=mx+b \\ \text{where,} \\ m=\text{slope} \\ b=y-\text{intercept} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rbz7njv4fudds20lum3kc0m2cirlj25s7r.png)
Concept:
The formula to calculate the equation of a line when one slope and one point is given is
![m=(y-y_1)/(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/jdj1lyi50jbpedvyjqiulvkzma36qgk0om.png)
Step 1:
Substitute the values in the formula above
![\begin{gathered} m=(y-y_1)/(x-x_1) \\ -1=(y-(-3))/(x-(-4)) \\ -1=(y+3)/(x+4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/golzfrodva2fdeu851cxe62qz9wnzw2t43.png)
Step 2:
Cross multiply the equation above
![\begin{gathered} -1=(y+3)/(x+4) \\ y+3=-1(x+4) \\ y+3=-x-4 \\ \text{substract 3 from both sides} \\ y+3-3=-x-4-3 \\ y=-x-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3a2l8c25pyiras80tzcjwny8fj4nlpnwdw.png)
Hence,
The equation of the line is y = -x -7
where the slope is m = -1
the y-intercept is b = -7