77.1k views
3 votes
What is are the solutions to the statement:(2x-7)(4x^2+14x+49)=0

User Joas
by
7.8k points

1 Answer

4 votes

SOLUTION

Given the question, the following are the solution steps to answer the question.

STEP 1: Write the given equation.


(2x-7)(4x^2+14x+49)=0

STEP 2: Find the solutions to the statement

First splitting the equation into two, we have:


\begin{gathered} (2x-7)(4x^(2)+14x+49)=0 \\ 2x-7=0 \\ 4x^2+14x+49=0 \\ \\ 2x-7=0 \\ 2x=7 \\ x=(7)/(2) \end{gathered}

STEP 3: Find the solution to the second equation


\begin{gathered} 4x^2+14x+49=0 \\ Using\text{ quadratic formula:} \\ x_(1,\:2)=(-b\pm√(b^2-4ac))/(2a) \\ From\text{ the equation,} \\ a=4,b=14,c=49 \\ \\ By\text{ substitution,} \\ x_(1,\:2)=(-14\pm √(14^2-4\cdot \:4\cdot \:49))/(2\cdot \:4) \\ By\text{ simplifying the numerator,} \\ √(14^2-4*4*49)=√(196-784)=√(-588)=14√(3)i \end{gathered}

By substitution,


\begin{gathered} x_(1,\:2)=(-14\pm \:14√(3)i)/(2\cdot \:4) \\ \mathrm{Separate\:the\:solutions} \\ x_1=(-14+14√(3)i)/(2\cdot \:4),\:x_2=(-14-14√(3)i)/(2\cdot \:4) \\ x_1=(-14+14√(3)i)/(2\cdot\:4)=-(7)/(4)+i(7√(3))/(4) \\ x_2=(-14-14√(3)i)/(2\cdot\:4)=-(7)/(4)-i(7√(3))/(4) \end{gathered}

Hence, the solutions to the statement are:


(7)/(2),-(7)/(4)+i(7√(3))/(4),-(7)/(4)-i(7√(3))/(4)

User Rezkam
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories