Given
m: mass
m = 1.20 kg
μ: kinetic friction
μ = 0.25
vi: speed contact light spring
vi = 3.40 m/s
k: spring costant force
k = 50 N/m
Procedure
a) distance of compression
energy balance equation
![\begin{gathered} \mu mg\cdot d+(1)/(2)kd^2-(1)/(2)mv^2_i=0 \\ 0.25\cdot1.20\cdot9.8\cdot d+(1)/(2)\cdot50\cdot d^2-(1)/(2)\cdot1.2\cdot3.40^2=0 \\ 2.94d+25.0d^2-6.936=0 \\ 25d^2+2.94d-6.936=0 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/2yvkcf4xely1j0rj8ggr4rm65iv3yywj65.png)
using the quadratic formula we get,
![d=0.471m](https://img.qammunity.org/2023/formulas/physics/college/4wzscjmn5ucle9n3vaoaak9d61jf5gxukw.png)
(b) find the speed v, at the unstretched
energy balance equation
![\begin{gathered} \mu mg\cdot d+(1)/(2)mv^2_i=(1)/(2)kd^2 \\ (1)/(2)kd^2-\mu mg\cdot d=(1)/(2)mv^2 \\ (1)/(2)\cdot50\cdot0.471-0.25\cdot1.20\cdot9.8\cdot0.471=(1)/(2)\cdot1.20\cdot v^2 \\ 4.1612=0.6v^2 \\ v=\sqrt[]{(4.1612)/(0.6)} \\ v=2.63m/s \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/r2bt1tl830o88snycx2n6u8omogz374mc9.png)
(c) Find the distance D where come to rest
energy balance equation
![\begin{gathered} (1)/(2)mv^2=\mu mg\cdot d \\ d=(1)/(2)\cdot(mv^2)/(\mu mg) \\ d=(1)/(2)\cdot(v^2)/(\mu g) \\ d=(1)/(2)\cdot(2.63^2)/(0.25\cdot9.8) \\ d=1.41m \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/t2fcr1h6hrvckt1po4qf6rzbfkax2pax5v.png)
(d) What if? The object becomes attached to the end of the spring
![\begin{gathered} (1)/(2)mv^2=\mu mg\cdot d+(1)/(2)kd^2 \\ (1)/(2)kd^2+\mu gm\cdot d-(1)/(2)mv^2=0 \\ 25d^2+2.94d-4.15=0 \\ d=\text{0}.35m \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/dm38t5g4p41kc99xmy71pyaikm0cy5j820.png)
The distance would be 0.35m