Answer:
8.9 x 10^(19) electrons
Step-by-step explanation:
First, we need to calculate the charge that passes through the conductor. It can be calculated as:
![\begin{gathered} I=(Q)/(t) \\ \\ Q=I\cdot t \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/aj5ecuqmt7ofm5nelsbyqbzcsfnj9hdagc.png)
Replacing I = 9.50 A and t = 1.50 s, we get:
![\begin{gathered} Q=(9.50\text{ A\rparen\lparen1.50 s\rparen} \\ Q=14.25\text{ C} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/7ay03yo0inot2y37manxgoyc7i0bx43m7l.png)
Then, the charge of 1 electron is 1.6 x 10^(-19) C, so we can calculate the number of electrons as
![\frac{14.25\text{ C}}{1.6*10^(-19)C\text{ /electron}}=8.9*10^(19)\text{ electrons}](https://img.qammunity.org/2023/formulas/physics/college/xh55y436tr31k3orlnxhyag5miimzkidqh.png)
Therefore, the number of electrons is 8.9 x 10^19