Given:
The length of the aluminum beam, L=10.0 m
The initial temperature, T₁=25.0 °C
The final length of the beam, l=10.0.12 m
The coefficient of linear expansion, α=2.40×10⁻⁵/°C
To find:
The final temperature of the beam.
Step-by-step explanation:
The coefficient of linear expansion is given by,
![\begin{gathered} \alpha=(\Delta L)/(L\Delta T) \\ =((l-L))/(L*\Delta T) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/1cgp7jsavs4zatsgeo2sajykrwpyzi3e37.png)
On substituting the known values,
![\begin{gathered} 2.40*10^5=((10.012-10))/(10*\Delta T) \\ \Rightarrow\Delta T=((10.012-10))/(10*2.40*10^(-5)) \\ =50\text{ }\degree C \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/97th0p75nw4zabsgidnwroale603otzhuy.png)
The change in the temperature is given by,
![\Delta T=T_2-T_1](https://img.qammunity.org/2023/formulas/chemistry/high-school/tprqdbud5lv45vqi4si59i75c8nvkae5sp.png)
Where T₂ is the final temperature of the beam.
On substituting the known values,
![\begin{gathered} 50=T_2-25.0 \\ \Rightarrow T_2=50+25 \\ =75.0\text{ }\degree C \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/t129dlo0kwm9itij5xm84efyq2grpx3u3j.png)
Final answer:
The final temperature of the beam is 75.0 °C