In order to define a linear function, we can use its slope-intercept form shown below:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
Then, to find the slope 'm' and the y-intercept 'b', we can use the two points given, that is, apply the x and y values of the point in the equation.
So we have:
![\begin{gathered} y=mx+b \\ (10,4)\colon \\ 4=10m+b \\ (-4,-10)\colon \\ -10=-4m+b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bbgcfomd3c1wkgczpbqwcut2cx6m1gxpl3.png)
We can solve this system of equations by subtracting the first and second equation to find the value of m:
![\begin{gathered} 4-(-10)=10m+b-(-4m+b) \\ 4+10=10m+b+4m-b \\ 14=14m \\ m=1 \\ \\ 4=10m+b \\ 4=10+b \\ b=4-10 \\ b=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d3urv4qc6oiu2f4qb9wgtrhk10oijvnw0h.png)
So our linear equation is:
![y=x-6](https://img.qammunity.org/2023/formulas/mathematics/college/8t21g89f1vg45ck87ua7asa9hvefzhz5ac.png)