First, we count the number of ways we can arrange the digits. The first number has 9 possibilities:
![1\text{ to 9,}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2xjvwywnt2yzsv50rfhov49g9kozwd3qpr.png)
the other digits have 10 possibilities each:
![0\text{ to 10.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/25b7d25cli2ctpy5aa8pyz2m9goop0ep1h.png)
Therefore, the number of ways we can arrange the digits is:
![9*10*10*10=9*10^3=9000.](https://img.qammunity.org/2023/formulas/mathematics/high-school/k74ri10m5b0qwkony0wb2i90m8w1gowwff.png)
Now, for the letters, the order matters, therefore, we can use the permutation formula:
![P(6,4)=(6!)/((6-4)!)=360.](https://img.qammunity.org/2023/formulas/mathematics/high-school/bhfhbfn9p6iq8ww6payiuh342ny7sb8nmk.png)
Finally, the total possible number of IDs is:
![9000*360=3240000.](https://img.qammunity.org/2023/formulas/mathematics/high-school/ic7g9c0xf337c1fasv0mb9fvj5efmvy1k4.png)
Answer:
![\begin{equation*} 3240000. \end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dodow6yixdxpcdqwsjm96nnzzyvdkgm0he.png)