Solution:
Given the figure below:
The above figure, when closed, results into a cuboid.
This can be proven in the diagram below:
where the cuboid has
![\begin{gathered} \text{length}=7\text{ units} \\ \text{width}=5\text{ units} \\ \text{height}=2\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sii0pjeix9wa0bdfd135vt8h43h7ycbe6f.png)
The surface area of a cuboid is expressed as
![\begin{gathered} \text{Area = 2(L}* W)+2(L* H)+2(H* W) \\ \text{where} \\ L\Rightarrow\text{length} \\ W\Rightarrow\text{width} \\ H\Rightarrow\text{height} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dw2euzeqeaj154oduhmjdd1gsfmwnah42l.png)
Thus, the surface area of the cuboid is evaluated as
![\begin{gathered} \text{Area = 2(L}* W)+2(L* H)+2(H* W) \\ =2(7\text{ units}*5\text{ units)+2(7 units}*2\text{ units)+2(2 units}*5\text{ units)} \\ =2(35\text{ square units)+2(14 square units})+2(10\text{ square units)} \\ =(70+28+20)\text{ square units} \\ =118\text{ square units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dnf1zcyrdcxnpvxsuog6ptsna2cpsk1bam.png)
Hence, the surface area of the box is
![118\text{ square units}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vvsypqqcvu5yh27v9zn2znpr74u6hhznf2.png)
The correct option is D.