Given:
There are given that the cos function:
![cos210^(\circ)=-(√(3))/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/ibxb6t9wqh0bnueitv5ym15k57k9fkf9ie.png)
Step-by-step explanation:
To find the value, first, we need to use the half-angle formula:
So,
From the half-angle formula:
![cos((\theta)/(2))=\pm\sqrt{(1+cos\theta)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/ayl59028uivzg485s293dq4psxf9d59xzi.png)
Then,
Since 105 degrees is the 2nd quadrant so cosine is negative
Then,
By the formula:
![\begin{gathered} cos(105^(\circ))=cos((210^(\circ))/(2)) \\ =-\sqrt{(1+cos(210))/(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/741e703rk5s2e5a2tjg9mkjwfl3n7u12lq.png)
Then,
Put the value of cos210 degrees into the above function:
So,
![\begin{gathered} cos(105^(\circ))=-\sqrt{(1+cos(210))/(2)} \\ cos(105^{\operatorname{\circ}})=-\sqrt{(1-(√(3))/(2))/(2)} \\ cos(105^(\circ))=-\sqrt{(2-√(3))/(4)} \\ cos(105^(\circ))=-\frac{\sqrt{2-√(3)}}{2} \end{gathered}]()
Final answer:
Hence, the value of the cos(105) is shown below:
![cos(105^{\operatorname{\circ}})=-\frac{\sqrt{2-√(3)}}{2}]()