From the given graph, let's find the time it takes the projectile to reach its maximum height.
Given:
θ = 40 degrees
Initial velocity, vo = 250 m/s.
To find the time it takes the projectile to reach maximum height, apply the formula:
![v_y=v_o\sin \theta-gt](https://img.qammunity.org/2023/formulas/physics/college/f062owr4gipt8b3v4xrtpehqugdf2d7hbm.png)
Where:
vy is the final velocity at maximum height = 0 m/s
vo is the initial velocity
g is acceleration due to gravity = 9.8 m/s²
![0=v_0\sin \theta-gt](https://img.qammunity.org/2023/formulas/physics/college/5hfaymawac12vm1127rcnrcyxx2dhe9y71.png)
Rewrite the formula for the time, t:
![t=(v_0\sin \theta)/(g)](https://img.qammunity.org/2023/formulas/physics/college/pfk7v49xr7zxgs9qntdmd7l5y5wt3aplw7.png)
Input values into the formula and solve for t:
![\begin{gathered} t=(250\sin 40)/(9.8) \\ \\ t=(160.67)/(9.8) \\ \\ t=16.4\text{ s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/5agun24151t5yr6xdidhgknvzd0t5btbyc.png)
Therefore, the time it takes the projectile to reach its maximum height is 16.40 seconds.
ANSWER:
a. 16.40 s
a. 16.40