SOLUTION
Define a variable for the unknown numbers.
![\text{ let the numbers be x and y}](https://img.qammunity.org/2023/formulas/mathematics/college/efuega32ar2hecu2hhbdi5tz096rj1nvqp.png)
The sum is 23, implies
![x+y=23](https://img.qammunity.org/2023/formulas/mathematics/high-school/2tsrjotazs4sd6a5kuy8v6445redxjhzmu.png)
The difference is 9 is written as
![x-y=9](https://img.qammunity.org/2023/formulas/mathematics/college/w4q7mvs5nyz8h7rur12igotutf55d6uww1.png)
Then we have the system of equation
![\begin{gathered} x+y=23\ldots\text{equation}1 \\ x-y=9\ldots\text{equation}2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a6ik05762vfkr1m8reyzxep2mc51x85v10.png)
Add equation 1 and 2.
![\begin{gathered} 2x-0=32 \\ 2x=32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rl036e9sl6kdgsjok896h46ib4oloeh41m.png)
Divide both sides by 2
![\begin{gathered} (2x)/(2)=(32)/(2) \\ \text{Then} \\ x=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dacwpmzxbhxhb3v8g9g6uwc686z3t08c5a.png)
hence x=16
Recall equation 1
![\begin{gathered} x+y=23 \\ \text{ put x=16} \\ 16+y=23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ng5icfj39r9nmv1areuhbd686u8uv1sol.png)
Subtract 16 from both sides, we have
![\begin{gathered} 16-16+y=23-16 \\ y=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f4kcqrohmq4kjohb72qbc5hdg9hw61a6xo.png)
Hence, y=7
Answer: The numbers are 16 and 7