We can find the volume of a sphere with the formula:
![V=(4)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zraet4fw93vx9gjz3iextthjo546ibcpwc.png)
1) When the radius of the sphere is r=7 in, the volume V is:
![V=(4)/(3)\pi(7)^3=(4)/(3)\pi\cdot343=(1372)/(3)\pi](https://img.qammunity.org/2023/formulas/mathematics/college/amvkwfh2kiflgnrv2to21vgj7kii4gzp07.png)
2) When the diameter of the sphere is d=33 in, the radius is r=33/2 and the volume V is:
![V=(4)/(3)\pi((33)/(2))^3=(4)/(3)\pi\cdot(35937)/(8)=(1)/(3)\cdot(35937)/(2)\cdot\pi=(17968.5)/(3)\pi](https://img.qammunity.org/2023/formulas/mathematics/college/6e182iouezk09yqg1in52vf9wjqs7g3n57.png)
3) The surface area of a sphere can be calculated with the formula:
![A=4\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/endzkccmbdqtq0qqsrjofdxl2ddqb4767i.png)
Then, if the sphere has a radius r = 2.8 in, the area A is:
![A=4\pi(2.8)^2=4\pi\cdot7.84=31.36\pi](https://img.qammunity.org/2023/formulas/mathematics/college/bkiishyqjpllvou7sp41fykcvhjwezw4i0.png)
4) In this case we know that the diameter is D = 24 mm, so the radius is r = 12 mm.
Then, the area is:
![A=4\pi(12)^2=4\pi\cdot144=576\pi](https://img.qammunity.org/2023/formulas/mathematics/college/gzwlxruo16ggev9ghut8xz9qoqvgxlwv2d.png)
Answer:
1) (1372/3) π
2) (17968.5/3) π
3) 31.36π
4) 576π