Question:
Solution:
Let the following linear function:
![4x\text{ + 5y = 20}](https://img.qammunity.org/2023/formulas/mathematics/college/zqsoklecygzt4106bsigt7t2qav6vt30f2.png)
solve for 5y:
![5y\text{ = }20-4x](https://img.qammunity.org/2023/formulas/mathematics/college/9lsqt0egy7qmqxze4km5nuav9sgclzskch.png)
solving for y, we get:
![y\text{ = }-(4)/(5)x\text{ + }4](https://img.qammunity.org/2023/formulas/mathematics/college/jedow9al7jjwqv48rf0vtllzkudztrokam.png)
the y- intercept is when x = 0, then replacing x = 0 into previous equation we get:
![y\text{ = }-(4)/(5)(0)\text{ + }4\text{ = 4}](https://img.qammunity.org/2023/formulas/mathematics/college/bxk66lmudhxr2n4lmzqso6pojvyx6swxvv.png)
then the y-intercept is the point:
(x,y) = (0,4)
Now, the x-intercept is when y = 0, the replacing y = 0 into the equation:
![y\text{ = }-(4)/(5)x\text{ + }4](https://img.qammunity.org/2023/formulas/mathematics/college/jedow9al7jjwqv48rf0vtllzkudztrokam.png)
we get:
![0\text{ = }-(4)/(5)x\text{ + }4](https://img.qammunity.org/2023/formulas/mathematics/college/6ooauqskbrti5y68z274mlfc9p6yz5f9tx.png)
this is equivalent to:
![-4\text{= }-(4)/(5)x\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/txuz1vbkl7nqwltnkssfkc8r9ocbzuy551.png)
this is equivalent to:
![4\text{= }(4)/(5)x\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/lxodmghmtfnsmy51t7epwm5jyw60xsvyrq.png)
solving for x, we get:
![x\text{ = }(20)/(4)\text{ = 5}](https://img.qammunity.org/2023/formulas/mathematics/college/1vda17338o0efhv90wtpbzgwntpseccizy.png)
then the x-intercept is the point:
(x,y) = (5,0)
Then, we can conclude that the correct answer is:
1. the y-intercept is the point (x,y) = (0,4).
2. the x-intercept is the point (x,y) = (5,0).
and the graph of the line is: