Let's rewrite the equation:
![5^{x_{}+2}=16](https://img.qammunity.org/2023/formulas/mathematics/college/2zyq6lpyfrl5l0kj69li1njluqie72qlxm.png)
To answer this question, we can start by applying log in both sides. We can choose the base of the log, let's use base 10, which is the most common one:
![\log (5^(x+2))=\log (16)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/8tjtisv6zv8jfm23vfyg92kolqlpj4umn8.png)
Now we use a the following property of log:
![\log _bx^a=a\cdot\log _bx](https://img.qammunity.org/2023/formulas/mathematics/college/uxab6zn0em2fe5542x9yq4ipm2zvvgiwx5.png)
So:
![\begin{gathered} (x+2)\log (5)=\log (16) \\ x+2=\frac{\log (16)_{}}{\log (5)} \\ x=\frac{\log(16)_{}}{\log(5)}-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xk2wo0xstgc5odhcr32k4y98jwjjk4s9mi.png)
We can use a calculator to get the log(16) and log(5). Alternatively, we can use a table of log base 10 values. We get:
![\begin{gathered} x=(1.204119983\ldots)/(0.698970004\ldots)-2 \\ x\approx1.72271-2 \\ x\approx-0.27729\approx-0.277 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ky8mfjwlhm9eslc6748u6fhl454cwto8ok.png)
So, the value of x to the nearest thousandths is -0.277.